login
A096823
Numbers of the form p*(p+(2n-1))/2 created with smallest primes of form p=2^x-(2n-1)=A096522(n). Here the exponent equals x=A096502[n], the least exponent providing this kind of primes. Peculiarity of the present terms is as follows: Mod[sigma[a(n)],a[n]]=2*n.
0
6, 20, 12, 151115727449904501489664, 56, 40, 24, 272, 1504, 208, 176, 1312, 112, 80, 48, 6208, 992, 928, 2059264, 5696, 736, 144115176533131264, 608, 544, 5056, 416, 352, 4672, 224, 160, 96, 24704, 24448, 3904, 3776, 487936, 112384, 3392, 22912
OFFSET
1,1
COMMENTS
These numbers are clearly analogous to perfect numbers.
EXAMPLE
a[1]=6 is the first even perfect number;
a[7]=24 corresponds to A096821(1)=24;
a[4]=151115727449904501489664=2^38*(2^39-7)=274877906944*549755813881;
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 13 2004
STATUS
approved