OFFSET
1,13
COMMENTS
Indices where records occur are hypotenuse values A001844 (Y+1); corresponding leg values given by A046092 (Y) and A005408 (X).
The number k, for k >= 0, appears exactly 4*(k+1) = A008586(k+1) times. The number k appears for the first time for a(4*T(k) + 1) = a(A001844(k)), where T(k) = A000217(k); see the preceding comment on records. - Wolfdieter Lang, Mar 01 2022
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
S. Crowley, Mellin and Laplace Integral Transforms Related to the Harmonic Sawtooth Map and a Diversion Into The Theory Of Fractal Strings, vixra:1202.0079, 2012.
S. Crowley, Integral Transforms of the Harmonic Sawtooth Map, The Riemann Zeta Function, Fractal Strings, and a Finite Reflection Formula, arXiv preprint arXiv:1210.5652 [math.NT], 2012. - N. J. A. Sloane, Jan 01 2013
Eric Weisstein's World of Mathematics, Pythagorean Triple.
FORMULA
a(n) = floor((sqrt(2*n-1) - 1)/2).
MAPLE
A095861 := proc (x) local y; y := 0; while (2*y+2)*(y+2) <= x do y := y+1 end do; return y end proc; map(A095861, [seq(k, k = 0 .. 100)]) # Stephen Crowley, Aug 01 2009
MATHEMATICA
Table[Floor[(Sqrt[2*n-1] - 1)/2], {n, 1, 100}] (* Jean-François Alcover, Apr 01 2018 *)
PROG
(Magma) [Floor((Sqrt(2*n-1)-1)/2): n in [1..105]]; // Vincenzo Librandi, Apr 01 2018
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Ray Chandler, Jun 20 2004
STATUS
approved