login
A093558
Triangle of numerators of coefficients of Faulhaber polynomials used for sums of even powers.
5
1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -5, 17, -5, 5, 1, -5, 41, -236, 691, -691, 1, -7, 14, -22, 359, -7, 7, 1, -14, 77, -293, 1519, -1237, 3617, -3617, 1, -6, 217, -1129, 8487, -6583, 750167, -43867, 43867, 1, -5, 23, -470, 689, -28399, 1540967, -1254146, 174611, -174611, 1, -55, 209, -902, 60511
OFFSET
2,12
COMMENTS
The companion triangle with the denominators is A093559.
Sum_{k=1..n} k^(2*(m-1)) = (2*n+1)*Sum_{j=0..m-1} Fe(m,k)*(n*(n+1))^(m-1-j), m >= 2. Sums of even powers of the first n integers >0 as polynomials in u := n*(n+1) (falling powers of u). See bottom of p. 288 of the 1993 Knuth reference.
REFERENCES
Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
LINKS
A. Dzhumadil'daev, D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. [N. J. A. Sloane, Jan 03 2013]
FORMULA
a(n, m) = numerator(Fe(m, k), with Fe(m, k):=(m-k)*A(m, k)/(2*m*(2*m-1)) with Faulhaber numbers A(m, k):=A093556(m, k)/A093557(m, k) in Knuth's version. From the bottom of p. 288 of the 1993 Knuth reference.
EXAMPLE
[1]; [1,-1]; [1,-1,1]; [1,-1,1,-1]; ...
Numerators of [1/6]; [1/10,-1/30]; [1/14,-1/14,1/42]; [1/18,-1/9,1/10,-1/30]; ... (see W. Lang link)
MATHEMATICA
a[m_, k_] := (-1)^(m-k)*Sum[Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; t[m_, k_] := (m-k)*a[m, k]/(2*m*(2*m-1)); Table[t[m, k] // Numerator, {m, 2, 12}, {k, 0, m-2}] // Flatten (* Jean-François Alcover, Mar 03 2014 *)
CROSSREFS
Sequence in context: A277534 A090592 A340706 * A170866 A337031 A125636
KEYWORD
sign,frac,tabl,easy
AUTHOR
Wolfdieter Lang, Apr 02 2004
STATUS
approved