OFFSET
1,5
COMMENTS
The companion triangle with the numerators is A093556, where more information can be found.
LINKS
A. Dzhumadil'daev, D. Yeliussizov, Power sums of binomial coefficients, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
W. Lang, First 10 rows.
D. Yeliussizov, Permutation Statistics on Multisets, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012.
FORMULA
a(m, k) = denominator(A(m, k)) with recursion: A(m, 0)=1, A(m, k)=-(sum(binomial(m-j, 2*k+1-2*j)*A(m, j), j=0..k-1))/(m-k) if 0<= k <= m-1, else 0. From the 1993 Knuth reference, given in A093556, p. 288, eq.(*) with A^{(m)}_k = A(m, k).
EXAMPLE
Triangle begins:
[1];
[1,1];
[1,2,1];
[1,3,3,1];
...
Denominators of [1]; [1,0]; [1,-1/2,0]; [1,-4/3,2/3,0]; ... (see W. Lang link in A093556.)
MATHEMATICA
a[m_, k_] := (-1)^(m-k)* Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Denominator[a[m, k]], {m, 1, 14}, {k, 0, m-1}]] (* Jean-François Alcover, Oct 25 2011 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Apr 02 2004
STATUS
approved