login
A098802
Greatest prime factors in Pascal's triangle (read by rows).
0
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 5, 5, 5, 3, 1, 1, 7, 7, 7, 7, 7, 7, 1, 1, 2, 7, 7, 7, 7, 7, 2, 1, 1, 3, 3, 7, 7, 7, 7, 3, 3, 1, 1, 5, 5, 5, 7, 7, 7, 5, 5, 5, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1, 3, 11, 11, 11, 11, 11, 11, 11, 11, 11, 3, 1
OFFSET
0,5
FORMULA
T(n,k) = A006530(A007318(n,k)), 0<=k<=n.
For primes p and k<p: T(p,k)=p (k>0), T(p+1,k)=p (k>1) and T(n,k)<p for n<p.
MATHEMATICA
T[n_, k_] := FactorInteger[Binomial[n, k]][[-1, 1]];
Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 15 2021 *)
CROSSREFS
Sequence in context: A157694 A271187 A093557 * A048804 A158565 A132422
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Nov 01 2004
STATUS
approved