login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125636 Smallest odd prime base q such that p^2 divides q^(p-1) - 1, where p = prime(n). 18
5, 17, 7, 19, 3, 19, 131, 127, 263, 41, 229, 691, 313, 19, 53, 521, 53, 601, 1301, 11, 619, 31, 269, 3187, 53, 181, 43, 317, 499, 373, 911, 659, 19, 3659, 313, 751, 233, 4373, 3307, 419, 2591, 313, 1249, 2897, 349, 709, 331, 1973, 1933, 503, 821, 977, 2371, 263 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Robert Israel, Table of n, a(n) for n = 1..1000

W. Keller and J. Richstein, Fermat quotients that are divisible by p.

MAPLE

a:= proc(p)

  local q;

  q:= 3;

  while (q &^ (p-1) - 1) mod p^2 <> 0 do

    q:= nextprime(q)

  od:

  q

end proc:

seq(a(ithprime(n)), n=1..100); # Robert Israel, Nov 24 2014

MATHEMATICA

Table[Function[p, q = 3; While[! Divisible[q^(p - 1) - 1, p^2], q = NextPrime@ q]; q]@ Prime@ n, {n, 54}] (* Michael De Vlieger, Feb 12 2017 *)

PROG

(PARI) a(n) = {p = prime(n); forprime(q=3, , if (Mod(q, p^2)^(p-1) == 1, return (q)); ); } \\ Michel Marcus, Nov 24 2014

CROSSREFS

Cf. A125637 (analogous with p^3 instead of p^2).

Cf. A125609 (q=3), A125610 (q=5), A125611 (q=7), A125612 (q=11), A125632 (q=13), A125633 (q=17), A125634 (q=19): sequences of smallest prime p such that q^n divides p^(q-1) - 1.

Sequence in context: A090592 A093558 A170866 * A156323 A286816 A276831

Adjacent sequences:  A125633 A125634 A125635 * A125637 A125638 A125639

KEYWORD

nonn

AUTHOR

Alexander Adamchuk, Nov 28 2006

EXTENSIONS

Removed an incorrect comment. - Felix Fröhlich, Feb 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 16:48 EST 2020. Contains 331173 sequences. (Running on oeis4.)