login
A092676
Numerators of coefficients in the series for inverf(2x/sqrt(Pi)).
5
1, 1, 7, 127, 4369, 34807, 20036983, 2280356863, 49020204823, 65967241200001, 15773461423793767, 655889589032992201, 94020690191035873697, 655782249799531714375489, 44737200694996264619809969
OFFSET
1,3
COMMENTS
Differs from A002067(n) at n = 6, 9, 12, ....
Following Blair et al., we use the notation inverf() for the inverse of the error function.
LINKS
G. Alkauskas, Algebraic and abelian solutions to the projective translation equation, arXiv preprint arXiv:1506.08028 [math.AG], 2015-2016; Aequationes Math. 90 (4) (2016), 727-763.
J. M. Blair, C. A. Edwards and J. H. Johnson, Rational Chebyshev approximations for the inverse of the error function, Math. Comp. 30 (1976), 827-830.
L. Carlitz, The inverse of the error function, Pacific J. Math., 13 (1963), 459-470.
Eric Weisstein's World of Mathematics, Inverse Erf
Wikipedia, Error Function
EXAMPLE
Inverf(2x/sqrt(Pi)) = x + x^3/3 + 7x^5/30 + 127x^7/630 + 4369x^9/22680 + 34807x^11/178200 + ...
The first few coefficients are 1, 1, 7/6, 127/90, 4369/2520, 34807/16200, 20036983/7484400, 2280356863/681080400, ...
MAPLE
c:=proc(n) option remember; if n <= 0 then 1 else add( c(k)*c(n-k-1)/((k+1)*(2*k+1)), k=0..n-1 ) fi; end;
MATHEMATICA
Numerator[CoefficientList[Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 50}], x]][[2 ;; ;; 2]] (* G. C. Greubel, Jan 09 2017 *)
CROSSREFS
Cf. A002067, A092677, A052712. For denominators see A132467.
Sequence in context: A274673 A363870 A215066 * A002067 A274571 A336502
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Mar 02 2004
EXTENSIONS
Edited by N. J. A. Sloane, Nov 15 2007
STATUS
approved