OFFSET
1,3
COMMENTS
Differs from A002067(n) at n = 6, 9, 12, ....
Following Blair et al., we use the notation inverf() for the inverse of the error function.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..230
G. Alkauskas, Algebraic and abelian solutions to the projective translation equation, arXiv preprint arXiv:1506.08028 [math.AG], 2015-2016; Aequationes Math. 90 (4) (2016), 727-763.
J. M. Blair, C. A. Edwards and J. H. Johnson, Rational Chebyshev approximations for the inverse of the error function, Math. Comp. 30 (1976), 827-830.
L. Carlitz, The inverse of the error function, Pacific J. Math., 13 (1963), 459-470.
Eric Weisstein, Mathematica program and first 50 terms of the series
Eric Weisstein's World of Mathematics, Inverse Erf
Wikipedia, Error Function
EXAMPLE
Inverf(2x/sqrt(Pi)) = x + x^3/3 + 7x^5/30 + 127x^7/630 + 4369x^9/22680 + 34807x^11/178200 + ...
The first few coefficients are 1, 1, 7/6, 127/90, 4369/2520, 34807/16200, 20036983/7484400, 2280356863/681080400, ...
MAPLE
c:=proc(n) option remember; if n <= 0 then 1 else add( c(k)*c(n-k-1)/((k+1)*(2*k+1)), k=0..n-1 ) fi; end;
MATHEMATICA
Numerator[CoefficientList[Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 50}], x]][[2 ;; ;; 2]] (* G. C. Greubel, Jan 09 2017 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Mar 02 2004
EXTENSIONS
Edited by N. J. A. Sloane, Nov 15 2007
STATUS
approved