

A092678


Decimal expansion of the probable error.


2



6, 7, 4, 4, 8, 9, 7, 5, 0, 1, 9, 6, 0, 8, 1, 7, 4, 3, 2, 0, 2, 2, 2, 7, 0, 1, 4, 5, 4, 1, 3, 0, 7, 1, 8, 5, 3, 8, 6, 9, 0, 4, 4, 1, 5, 0, 4, 9, 8, 6, 1, 8, 9, 5, 6, 6, 2, 0, 9, 3, 7, 8, 8, 5, 9, 4, 8, 4, 8, 6, 7, 9, 2, 8, 2, 4, 4, 3, 0, 9, 1, 0, 9, 5, 4, 4, 5, 0, 4, 4, 7, 4, 0, 1, 6, 7, 7, 8, 4, 5, 7, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

0.75 percentile of the normal probability distribution function. In a bilateral sense, normally distributed random values x are equally likely to fall inside the interval (a*sigma, +a*sigma) as to fall outside, "a" being this constant.  Stanislav Sykora, Nov 08 2013


LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..9999
Stanislav Sykora, PARI/GP scripts for NormalErrorFunctions.
Eric Weisstein's World of Mathematics, Standard Normal Distribution
Eric Weisstein's World of Mathematics, Probable Error


FORMULA

Equals A069286 * A002193.


EXAMPLE

InverseErf(1/2) * sqrt(2) = 0.674489750...


MATHEMATICA

RealDigits[ Sqrt[2] InverseErf[1/2], 10, 111][[1]] (* Robert G. Wilson v, Feb 11 2015 *)


PROG

(PARI) See the links.
(PARI) solve(x=0, 1, erfc(x)1/2)*sqrt(2) \\ Charles R Greathouse IV, Oct 15 2015


CROSSREFS

Cf. A002193, A069286.
Sequence in context: A242670 A196761 A195776 * A019932 A004447 A258989
Adjacent sequences: A092675 A092676 A092677 * A092679 A092680 A092681


KEYWORD

nonn,cons


AUTHOR

Eric W. Weisstein, Mar 03 2004


STATUS

approved



