This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091831 Pierce expansion of 1/sqrt(2). 2
 1, 3, 8, 33, 35, 39201, 39203, 60245508192801, 60245508192803, 218662352649181293830957829984632156775201, 218662352649181293830957829984632156775203 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If u(0)=exp(1/m) m integer>1 and u(n+1)=u(n)/frac(u(n)) then floor(u(n))=m*n. LINKS G. C. Greubel, Table of n, a(n) for n = 0..14 P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Théor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53. Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335. Pelegrí Viader, Lluís Bibiloni, Jaume Paradís, On a problem of Alfred Renyi, Economics Working Paper No. 340. Eric Weisstein's World of Mathematics, Pierce Expansion FORMULA Let u(0)=sqrt(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)). 1/sqrt(2)= 1/a(1) - 1/a(1)/a(2) + 1/a(1)/a(2)/a(3) - 1/a(1)/a(2)/a(3)/a(4)... limit n -> infinity a(n)^(1/n) = e. MATHEMATICA PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/2), 7!], 17] (* G. C. Greubel, Nov 13 2016 *) PROG (PARI) r=sqrt(2); for(n=1, 10, r=r/(r-floor(r)); print1(floor(r), ", ")) CROSSREFS Cf. A006275, A006276, A006283. Cf. A006784 (Pierce expansion definition), A028254 Sequence in context: A321520 A321522 A258690 * A284963 A148916 A148917 Adjacent sequences:  A091828 A091829 A091830 * A091832 A091833 A091834 KEYWORD nonn AUTHOR Benoit Cloitre, Mar 09 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 13:32 EST 2019. Contains 319193 sequences. (Running on oeis4.)