login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028254 Engel expansion of sqrt(2). 7
1, 3, 5, 5, 16, 18, 78, 102, 120, 144, 251, 363, 1402, 31169, 88630, 184655, 259252, 298770, 4196070, 38538874, 616984563, 1975413035, 5345718057, 27843871197, 54516286513, 334398528974, 445879679626 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For a number x (here sqrt(2)), define a(1)<=a(2)<=a(3)<=... so that x = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... by x(1)=x, a(n) = ceil(1/x(n)), x(n+1) = x(n)a(n)-1.

LINKS

T. D. Noe, Table of n, a(n) for n=1..300

Benoît Rittaud, La porte d’harmonie — Images des Mathématiques, CNRS, 2009.

Naoki Sato, Home page

Eric Weisstein's World of Mathematics, Engel Expansion

Eric Weisstein's World of Mathematics, Pythagoras's Constant

MATHEMATICA

EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[2^(1/2), 7! ], 47] (* Vladimir Joseph Stephan Orlovsky, Jun 08 2009 *)

CROSSREFS

Cf. A006784 (for definition of Engel expansion).

Sequence in context: A188345 A028265 A084041 * A137780 A079372 A055382

Adjacent sequences:  A028251 A028252 A028253 * A028255 A028256 A028257

KEYWORD

nonn,changed

AUTHOR

Naoki Sato (naoki(AT)math.toronto.edu)

EXTENSIONS

More terms from Simon Plouffe, Jan 05 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 16:31 EST 2014. Contains 250364 sequences.