login
A321522
Expansion of Product_{k>=1} (1 + x^k)^((k-1)!).
2
1, 1, 1, 3, 8, 32, 153, 883, 5980, 46660, 411861, 4057263, 44104688, 524243696, 6762188285, 94055795999, 1403061499362, 22342571084082, 378257158227079, 6783952072695685, 128481050502464062, 2562250926987454694, 53668572808754641369, 1177957644341460946099
OFFSET
0,4
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d! ) * x^k/k).
a(n) ~ (n-1)! * (1 + 1/n + 2/n^2 + 7/n^3 + 34/n^4 + 203/n^5 + 1455/n^6 + 12343/n^7 + 121636/n^8 + 1368647/n^9 + 17343274/n^10 + ...). - Vaclav Kotesovec, Nov 13 2018
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*binomial((i-1)!, j), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Aug 10 2021
MATHEMATICA
nmax = 23; CoefficientList[Series[Product[(1 + x^k)^((k - 1)!), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d!, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 23}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 12 2018
STATUS
approved