login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091685
Sieve out 6n+1 and 6n-1.
1
0, 1, 0, 0, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 0, 0, 23, 0, 25, 0, 0, 0, 29, 0, 31, 0, 0, 0, 35, 0, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 49, 0, 0, 0, 53, 0, 55, 0, 0, 0, 59, 0, 61, 0, 0, 0, 65, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 77, 0, 79, 0, 0, 0, 83, 0, 85, 0, 0, 0, 89, 0
OFFSET
0,6
COMMENTS
Completely multiplicative with a(2) = a(3) = 0, a(p) = p otherwise. - David W. Wilson, Jun 12 2005
FORMULA
a(n) = -Product_{k=0..5} Sum_{j=1..n} w(6)^(kj), w(6) = e^(2*Pi*i/6), i = sqrt(-1).
G.f.: x*(x^2+1)*(x^8-x^6+6*x^4-x^2+1) / ( (x-1)^2 *(1+x)^2 *(1+x+x^2)^2 *(x^2-x+1)^2 ). - R. J. Mathar, Feb 14 2015
From Amiram Eldar, Dec 18 2023: (Start)
Dirichlet g.f.: zeta(s-1) * (1 - 1/2^(s-1)) * (1 - 1/3^(s-1)).
Sum_{k=1..n} a(k) ~ n^2/6. (End)
MATHEMATICA
Table[n Boole[Or[# == 1, # == 5] &@ Mod[n, 6]], {n, 0, 90}] (* or *)
CoefficientList[Series[x (x^2 + 1) (x^8 - x^6 + 6 x^4 - x^2 + 1)/((x - 1)^2*(1 + x)^2*(1 + x + x^2)^2*(x^2 - x + 1)^2), {x, 0, 90}], x] (* Michael De Vlieger, Jul 24 2017 *)
PROG
(PARI) a(n)=if(gcd(n, 6)==1, n, 0) \\ Charles R Greathouse IV, Jun 28 2015
(Scheme) (define (A091685 n) (if (or (even? n) (zero? (modulo n 3))) 0 n)) ;; Antti Karttunen, Jul 24 2017
(Python)
from sympy import gcd
def a(n): return n if gcd(n, 6) == 1 else 0
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 26 2017
CROSSREFS
Cf. A007310 (nonzero terms), A047229 (positions of zeros), A054500.
Sequence in context: A343015 A069206 A291800 * A349298 A062824 A292904
KEYWORD
easy,nonn,mult
AUTHOR
Paul Barry, Jan 28 2004
STATUS
approved