login
A091671
Decimal expansion of (3*Gamma(1/3)^6)/(16*2^(2/3)*Pi^4).
3
4, 4, 8, 2, 2, 0, 3, 9, 4, 3, 8, 8, 3, 8, 1, 4, 3, 2, 1, 1, 6, 3, 8, 5, 4, 5, 0, 0, 1, 7, 4, 8, 5, 2, 4, 9, 5, 6, 9, 3, 9, 2, 2, 0, 1, 7, 0, 8, 1, 2, 0, 7, 3, 0, 4, 9, 1, 7, 4, 1, 6, 9, 9, 3, 5, 3, 2, 7, 9, 8, 3, 9, 8, 9, 0, 3, 0, 6, 8, 0, 1, 5, 7, 1, 1, 6, 8, 8, 4, 9, 6, 1, 3, 8, 0, 3, 9, 0, 6, 1, 1, 8
OFFSET
0,1
COMMENTS
Watson's second triple integral.
LINKS
Eric Weisstein's World of Mathematics, Watson's Triple Integrals
EXAMPLE
0.448220394388381432116385450017485249569392201708120730....
MATHEMATICA
RealDigits[(3*Gamma[1/3]^6)/(16*2^(2/3)*Pi^4), 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
PROG
(PARI) default(realprecision, 100); (3*gamma(1/3)^6)/(16*2^(2/3)*Pi^4) \\ G. C. Greubel, Oct 26 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (3*Gamma(1/3)^6)/(16*2^(2/3)*Pi(R)^4); // G. C. Greubel, Oct 26 2018
CROSSREFS
Sequence in context: A372765 A067736 A181387 * A137797 A358561 A176295
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 27 2004
STATUS
approved