login
A091672
Decimal expansion of (4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6))*EllipticK((2-sqrt(3))^2*(-sqrt(2)+sqrt(3))^2)^2)/Pi^2.
3
5, 0, 5, 4, 6, 2, 0, 1, 9, 7, 1, 7, 3, 2, 6, 0, 0, 6, 0, 5, 2, 0, 0, 4, 0, 5, 3, 2, 2, 7, 1, 4, 0, 2, 5, 9, 9, 8, 5, 1, 2, 9, 0, 1, 4, 8, 1, 7, 4, 2, 0, 8, 9, 2, 1, 8, 8, 9, 9, 3, 4, 8, 7, 8, 8, 6, 0, 2, 8, 7, 7, 3, 4, 5, 1, 1, 7, 3, 8, 1, 6, 8, 0, 0, 5, 3, 7, 2, 4, 7, 0, 6, 9, 8, 9, 6, 0, 3, 7, 9, 7, 5
OFFSET
0,1
COMMENTS
Watson's third triple integral.
LINKS
D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, Ten Problems in Experimental Mathematics
Eric Weisstein's World of Mathematics, Watson's Triple Integrals
EXAMPLE
0.505462019717326006052004053227140259985129014817420892188993487886...
MAPLE
evalf((4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2, 120); # Vaclav Kotesovec, Apr 22 2015
MATHEMATICA
RealDigits[ N[ (4*(18 + 12*Sqrt[2] - 10*Sqrt[3] - 7*Sqrt[6])*EllipticK[(2 - Sqrt[3])^2*(-Sqrt[2] + Sqrt[3])^2]^2)/Pi^2, 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
CROSSREFS
Sequence in context: A373022 A140240 A261839 * A144702 A238192 A156716
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 27 2004
STATUS
approved