This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091206 Primes whose binary representation encodes a polynomial irreducible over GF(2). 25
 2, 3, 7, 11, 13, 19, 31, 37, 41, 47, 59, 61, 67, 73, 97, 103, 109, 131, 137, 157, 167, 191, 193, 211, 229, 239, 241, 283, 313, 379, 397, 419, 433, 463, 487, 499, 557, 563, 587, 601, 607, 613, 617, 631, 647, 661, 677, 701, 719, 757, 761, 769, 787, 827, 859 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS "Encoded in binary representation" means that a polynomial a(n)*X^n+...+a(0)*X^0 over GF(2) is represented by the binary number a(n)*2^n+...+a(0)*2^0 in Z (where each coefficient a(k) = 0 or 1). Subsequence with Hamming weight nonprime starts 2, 1019, 1279, 1531, 1663, 1759, 1783, 1789, 2011, 2027, 2543, 2551, ... [Joerg Arndt, Nov 01 2013]. These are now given by A255569. - Antti Karttunen, May 14 2015 LINKS A. Karttunen, Scheme-program for computing this sequence. FORMULA a(n) = A000040(A091207(n)) = A014580(A091208(n)). PROG (PARI) is(n)=polisirreducible( Mod(1, 2) * Pol(digits(n, 2)) ); forprime(n=2, 10^3, if (is(n), print1(n, ", "))); \\ Joerg Arndt, Nov 01 2013 CROSSREFS Intersection of A014580 and A000040. Apart from a(2) = 3 a subsequence of A027697. Also subsequence of A235045 (its primes. Cf. also A235041-A235042). Cf. A091209 (Primes whose binary expansion encodes a polynomial reducible over GF(2)), A091212 (Composite, and reducible over GF(2)), A091214 (Composite, but irreducible over GF(2)), A257688 (either 1, prime or irreducible over GF(2)). Subsequence: A255569. Sequence in context: A155153 A014580 A197227 * A038963 A167609 A117112 Adjacent sequences:  A091203 A091204 A091205 * A091207 A091208 A091209 KEYWORD nonn AUTHOR Antti Karttunen, Jan 03 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 23:11 EDT 2019. Contains 328379 sequences. (Running on oeis4.)