login
A255569
Primes whose binary representation encodes an irreducible polynomial over GF(2) and has a nonprime number of 1's.
3
2, 1019, 1279, 1531, 1663, 1759, 1783, 1789, 2011, 2027, 2543, 2551, 2687, 2879, 2927, 2999, 3037, 3319, 3517, 3547, 3559, 3709, 3833, 3947, 4007, 4013, 4021, 4051, 4073, 4591, 5023, 5039, 5051, 5107, 5563, 5591, 5743, 5821, 5981, 6067, 6271, 6607, 6637, 6779, 6959, 7079, 7351, 7411, 7517, 7541, 7591, 7603, 7727, 7741, 7823, 7907, 7963, 7993
OFFSET
1,1
LINKS
MAPLE
filter:= proc(n)
local a, i, x;
if not isprime(n) then return false fi;
a:= convert(n, base, 2);
not isprime(convert(a, `+`)) and (Irreduc(add(x^(i-1)*a[i], i=1..nops(a))) mod 2)
end proc:
select(filter, [2, 2*j+1$j=1..10000]); # Robert Israel, May 14 2015
MATHEMATICA
okQ[p_?PrimeQ] := Module[{id, pol, x}, id = IntegerDigits[p, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol, Modulus -> 2] && !PrimeQ[Count[id, 1]]];
Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Feb 09 2023 *)
PROG
(PARI)
isA014580(n) = polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
i = 0; forprime(n=2, 2^31, if(isA014580(n)&&!isprime(hammingweight(n)), i++; write("b255569.txt", i, " ", n); if(i>=10000, return(n))));
CROSSREFS
Intersection of A091206 and A084345.
Intersection of A014580 and A255564.
Sequence in context: A258661 A370557 A024033 * A354534 A004897 A004802
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 14 2015 after Joerg Arndt's Nov 01 2013 comment in A091206
STATUS
approved