login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027697 Odious primes: primes with odd number of 1's in binary expansion. 34
2, 7, 11, 13, 19, 31, 37, 41, 47, 59, 61, 67, 73, 79, 97, 103, 107, 109, 127, 131, 137, 151, 157, 167, 173, 179, 181, 191, 193, 199, 211, 223, 227, 229, 233, 239, 241, 251, 271, 283, 307, 313, 331, 367, 379, 397, 409, 419, 421, 431, 433, 439, 443, 457, 463, 487, 491, 499, 521, 541, 557, 563 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: a(n) < A027699(n) except for n = 2; verified up to n=5*10^7. Moreover, I conjecture that A027699(n) - a(n) tends to infinity. - Vladimir Shevelev

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

E. Fouvry, C. Mauduit, Sommes des chiffres et nombres presque premiers, (French) [Sums of digits and almost primes] Math. Ann. 305 (1996), no. 3, 571--599. MR1397437 (97k:11029)

Ben Green, Three topics in additive prime number theory, Oct 03, 2007, pp. 12-27.

V. Shevelev, Generalized Newman phenomena and digit conjectures on primes, Int. J. of Math.& Math. Sci., Vol. 2008, Article ID 908045.

MAPLE

a:=proc(n) local nn: nn:= convert(ithprime(n), base, 2): if `mod`(sum(nn[j], j =1..nops(nn)), 2)=1 then ithprime(n) else end if end proc: seq(a(n), n=1..103); # Emeric Deutsch, Oct 24 2007

MATHEMATICA

Clear[BinSumOddQ]; BinSumOddQ[a_]:=Module[{i, s=0}, s=0; For[i=1, i<=Length[IntegerDigits[a, 2]], s+=Extract[IntegerDigits[a, 2], i]; i++ ]; OddQ[s]]; lst={}; Do[p=Prime[n]; If[BinSumOddQ[p], AppendTo[lst, p]], {n, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 06 2009 *)

PROG

(PARI) f(p)={v=binary(p); s=0; for(k=1, #v, if(v[k]==1, s++)); return(s%2)};

forprime(p=2, 563, if(f(p), print1(p, ", "))) \\ Washington Bomfim, Jan 14, 2011

(PARI) s=[]; forprime(p=2, 1000, if(norml2(binary(p))%2==1, s=concat(s, p))); s \\ Colin Barker, Feb 18 2014

CROSSREFS

Cf. A027699, A066148, A066149.

Cf. A000069 (odious numbers), A092246 (odd odious numbers)

Sequence in context: A161681 A020583 A140557 * A235475 A146315 A038892

Adjacent sequences:  A027694 A027695 A027696 * A027698 A027699 A027700

KEYWORD

nonn,easy,base

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 1 00:26 EDT 2014. Contains 247498 sequences.