

A089963


a(n) = Taylor coefficient at x=li(e) of the inverse of the function li(x) (the logarithm integral) multiplied by exp(n).


0



1, 0, 1, 2, 1, 26, 99, 90, 3627, 21054, 21735, 1465278, 11769033, 10145862, 1292734485, 13592476842, 5651236989, 2114795158962, 28081762413807, 8040489684078, 5763467251713423, 94263221264053590, 115569462262872717, 24259606258553011206, 479901663461939425317
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Define the inverse of li(x) by H(z) and the point Zo = li(e). Then H(z)= e + a(1)*exp(1)*(zZo)/1 + a(2)*exp(2)*(zZo)^2/2! + a(3)*exp(3)*(zZo)^3/3! + ...


REFERENCES

D. Dominici, Nested derivatives: a simple method for computing series expansions of inverse functions, IJMMS 2003:58, 36993715.


LINKS

Table of n, a(n) for n=1..25.


CROSSREFS

Sequence in context: A098878 A235031 A138955 * A012411 A012415 A012660
Adjacent sequences: A089960 A089961 A089962 * A089964 A089965 A089966


KEYWORD

sign


AUTHOR

Diego Dominici (dominicd(AT)newpaltz.edu), Jan 12 2004


STATUS

approved



