login
A089961
a(n) = floor( 1/( {n/phi}-{n/phi}^2 ) )-1, where {} is the fractional part and phi the golden ratio.
2
3, 4, 7, 3, 11, 3, 3, 18, 3, 5, 5, 3, 29, 3, 4, 9, 3, 8, 4, 3, 47, 3, 4, 6, 3, 14, 3, 3, 13, 3, 6, 4, 3, 76, 3, 4, 7, 3, 9, 3, 3, 23, 3, 5, 5, 3, 21, 3, 3, 10, 3, 7, 4, 3, 123, 3, 4, 6, 3, 12, 3, 3, 15, 3, 6, 5, 3, 38, 3
OFFSET
1,1
COMMENTS
a(Fibonacci(n)) = Lucas(n), n>=2, where Fibonacci=A000045 and Lucas=A000032.
a(Lucas(n)) = Fibonacci(n), n>=4.
Examples: a(8) = 18, where 8 = Fibonacci(6) and 18 = Lucas(6). a(29) = 13, where 29 = Lucas(7) and 13 = Fibonacci(7).
FORMULA
a(n) = A089959(n) - 1.
MAPLE
fpart := proc(x)
x-floor(x) ;
end proc:
A089961 := proc(n)
invphi := 2/(1+sqrt(5)) ;
fn := fpart(n*invphi) ;
1/fn/(1-fn);
floor(%)-1 ;
end proc: # R. J. Mathar, May 11 2013
CROSSREFS
Sequence in context: A130880 A026248 A082089 * A359954 A316498 A200681
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Nov 20 2003
STATUS
approved