login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089732
Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n having k (1,1) steps (can be easily translated into RNA secondary structure terminology). Except for row 0, row n has ceiling(n/2) entries.
4
1, 1, 1, 1, 1, 1, 3, 1, 6, 1, 1, 10, 6, 1, 15, 20, 1, 1, 21, 50, 10, 1, 28, 105, 50, 1, 1, 36, 196, 175, 15, 1, 45, 336, 490, 105, 1, 1, 55, 540, 1176, 490, 21, 1, 66, 825, 2520, 1764, 196, 1, 1, 78, 1210, 4950, 5292, 1176, 28, 1, 91, 1716, 9075, 13860, 5292, 336, 1, 1, 105
OFFSET
0,7
LINKS
A. Panayotopoulos and P. Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From N. J. A. Sloane, Dec 29 2012
W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
Yuriy Shablya and Dmitry Kruchinin, Algorithms for ranking and unranking the combinatorial set of RNA secondary structures, arXiv:2301.11890 [cs.DS], 2023.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Sem. Loth. Comb. B08l (1984) 79-86. [Formerly: Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, p. 79-86.]
M. S. Waterman, Home Page (contains copies of his papers)
FORMULA
T(0, 0) = 1;
T(n, k) = binomial(n-k, k)*binomial(n-k, k+1)/(n-k) for 2k <= n-1.
G.f. = g = (1 - z + tz^2 - sqrt(1 - 2z + z^2 - 2tz^2 - 2tz^3 + t^2*z^4))/(2tz^2), solution of g = 1 + zg + tz^2*g(g-1). G.f. = 1+r(tz, z), where r(t, z) is the Narayana function defined by r = z(1+r)(1+tr). Column g.f.'s are 1/(1-z) for column 0 and z^(k+1)*N_k(z)/(1-z)^(2k+1) for columns k=1, 2, ..., where N_k(z) = (1/k)*Sum_{j=1..k} binomial(k, j)*binomial(k, j-1)*z^(j-1) are the Narayana polynomials.
G.f. g(z, t) = Sum_{n, k} T(n, k)z^n*t^k = 1/(1 - z + z^2*t(1-g(z, t))). - Michael Somos, Sep 08 2005
Given g.f. g(z, t) then G=z*g(z, t) series reversion in z is -G(-z, t). - Michael Somos, Sep 08 2005
Given g.f. g(z, t) then G=z*g(z, t) satisfies G = z + z*G/(1-t*z*G). - Michael Somos, Sep 08 2005
EXAMPLE
T(4,1)=3 because we have UHDH, HUHD and UHHD, where U=(1,1), D=(1,-1), H=(1,0).
1; 1; 1; 1,1; 1,3; 1,6,1; 1,10,6; 1,15,20,1; 1,21,50,10; 1,28,105,50,1.
From Tom Copeland, May 14 2012: (Start)
Or as irregular table whose diagonals are rows of A001263:
[1] 1;
[2] 1;
[3] 1, 1;
[4] 1, 3,;
[5] 1, 6, 1;
[6] 1, 10, 6;
[7] 1, 15, 20, 1;
[8] 1, 21, 50, 10;
[9] 1, 28, 105, 50, 1; (End)
PROG
(PARI) {T(n, k)=local(A); if(n<1, k==0, n--; A=1+O(x); for(i=1, (n+1)\2, A = 1/(1/(1+x*x*y*A)-x)); polcoeff(polcoeff(A, n), k))} /* Michael Somos, Sep 08 2005 */
CROSSREFS
Row sums give A004148.
Sequence in context: A130541 A128489 A034839 * A158905 A098076 A171852
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jan 07 2004
STATUS
approved