This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089732 Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n having k (1,1) steps (can be easily translated into RNA secondary structure terminology). Except for row 0, row n has ceil(n/2) entries. 4

%I

%S 1,1,1,1,1,1,3,1,6,1,1,10,6,1,15,20,1,1,21,50,10,1,28,105,50,1,1,36,

%T 196,175,15,1,45,336,490,105,1,1,55,540,1176,490,21,1,66,825,2520,

%U 1764,196,1,1,78,1210,4950,5292,1176,28,1,91,1716,9075,13860,5292,336,1,1,105

%N Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n having k (1,1) steps (can be easily translated into RNA secondary structure terminology). Except for row 0, row n has ceil(n/2) entries.

%D A. Panayotopoulos and P. Vlamos, Cutting Degree of Meanders, Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, Volume 382, 2012, pp 480-489; DOI 10.1007/978-3-642-33412-2_49. - From _N. J. A. Sloane_, Dec 29 2012

%D W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.

%D P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26, 1979, 261-272.

%D M. Vauchassade de Chaumont and G. Viennot, Polynomes orthogonaux et problemes d'enumeration en biologie moleculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.

%H M. Vauchassade de Chaumont and G. Viennot, <a href="http://www.mat.univie.ac.at/~slc/opapers/s08viennot.html">Polynomes orthogonaux at problemes d'enumeration en biologie moleculaire</a>, Sem. Loth. Comb. B08l (1984) 79-86.

%H M. S. Waterman, <a href="http://www.cmb.usc.edu/people/msw/Waterman.html">Home Page</a> (contains copies of his papers)

%F T(0, 0)=1; T(n, k)=binomial(n-k, k)*binomial(n-k, k+1)/(n-k) for 2k<=n-1. G.f.=g=(1-z+tz^2-sqrt(1-2z+z^2-2tz^2-2tz^3+t^2*z^4))/(2tz^2), solution of g=1+zg+tz^2*g(g-1). G.f.=1+r(tz, z), where r(t, z) is the Narayana function defined by r=z(1+r)(1+tr). Column g.f.'s are 1/(1-z) for column 0 and z^(k+1)*N_k(z)/(1-z)^(2k+1) for columns k=1, 2, ..., where N_k(z)=(1/k)sum(binomial(k, j)*binomial(k, j-1)*z^(j-1), j=1..k) are the Narayana polynomials.

%F G.f. g(z, t) = Sum_{n, k} T(n, k)z^n*t^k = 1/(1 - z + z^2*t(1-g(z, t))). - Michael Somos Sep 08 2005

%F Given g.f. g(z, t) then G=z*g(z, t) series reversion in z is -G(-z, t). - Michael Somos Sep 08 2005

%F Given g.f. g(z, t) then G=z*g(z, t) satisfies G = z + z*G/(1-t*z*G). - Michael Somos Sep 08 2005

%e T(4,1)=3 because we have UHDH, HUHD and UHHD, where U=(1,1), D=(1,-1), H=(1,0).

%e 1; 1; 1; 1,1; 1,3; 1,6,1; 1,10,6; 1,15,20,1; 1,21,50,10; 1,28,105,50,1;

%e Or as irregular table whose diagonals are rows of A001263:

%e [1] 1

%e [2] 1

%e [3] 1, 1

%e [4] 1, 3,

%e [5] 1, 6, 1

%e [6] 1, 10, 6

%e [7] 1, 15, 20, 1

%e [8] 1, 21, 50, 10

%e [9] 1, 28, 105, 50, 1 - Tom Copeland, May 14 2012

%o (PARI) {T(n,k)=local(A); if(n<1, k==0, n--; A=1+O(x); for(i=1,(n+1)\2, A = 1/(1/(1+x*x*y*A)-x)); polcoeff(polcoeff(A,n),k))} /* Michael Somos Sep 08 2005 */

%Y Row sums give A004148.

%K nonn,tabf

%O 0,7

%A _Emeric Deutsch_, Jan 07 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .