login
A089400
a(n) = m - A089398(2^m - n) for m>=n.
6
0, 2, 2, 2, 1, 4, 2, 2, 1, 3, 3, 3, 3, 4, 2, 2, 1, 3, 3, 3, 2, 5, 3, 3, 2, 4, 4, 5, 3, 4, 2, 2, 1, 3, 3, 3, 2, 5, 3, 3, 2, 4, 4, 4, 4, 5, 3, 3, 2, 4, 4, 4, 3, 6, 4, 4, 3, 5, 6, 5, 3, 4, 2, 2, 1, 3, 3, 3, 2, 5, 3, 3, 2, 4, 4, 4, 4, 5, 3, 3, 2, 4, 4, 4, 3, 6, 4, 4, 3, 5, 5, 6, 4, 5, 3, 3, 2, 4, 4, 4, 3, 6, 4, 4, 3
OFFSET
0,2
COMMENTS
A089398(n) = n-th column sum of binary digits of k*2^(k-1), where summation is over k>=1, without carrying between columns.
FORMULA
a(2^k)=1 (for k>1), a(2^k+j)=1+a(j) (for 2^k-k>j>=0), a(2^k-j)=1+A089401(j) (for k>j>0).
EXAMPLE
a(6)=4 since 7 - A089398(2^7 - 6) = 7 - 3 = 4.
CROSSREFS
Sequence in context: A277523 A144393 A351112 * A239209 A180824 A105777
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 30 2003
STATUS
approved