The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105777 Trajectory of 1 under the morphism 1->{1,2,2,2,1}, 2->{4,3,3,3,4}, 3->{2,1,1,1,2}, 4->{3,4,4,4,3}. 0
 1, 2, 2, 2, 1, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 4, 1, 2, 2, 2, 1, 3, 4, 4, 4, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 4, 4, 3, 1, 2, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Edgar-Peano substitution of 4 symbols taken 5 at a time: characteristic polynomial -x^5 + 5*x^3 + 5*x^2 - 25*x. LINKS F. M. Dekking, Recurrent sets, Advances in Mathematics, 44 (1982), 78-104. G. A. Edgar and Jeffery Golds, A Fractal Dimension Estimate for a Graph-Directed IFS of Non-Similarities, arXiv:math/9806039 [math.CA], 1991 MATHEMATICA s[1] = {1, 2, 2, 2, 1}; s[2] = {4, 3, 3, 3, 4}; s[3] = {2, 1, 1, 1, 2}; s[4] = {3, 4, 4, 4, 3}; s[5] = {} t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; aa = p[3] PROG (PARI) {a(n)=local(A); if(n<1, 0, A=[1]; while(length(A)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 10:49 EDT 2020. Contains 336198 sequences. (Running on oeis4.)