login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086278 Decimal expansion of Shapiro's cyclic sum constant mu. 1
9, 7, 8, 0, 1, 2, 4, 7, 8, 1, 8, 6, 6, 4, 6, 2, 2, 0, 2, 0, 1, 8, 2, 7, 9, 5, 9, 9, 7, 8, 6, 8, 2, 6, 8, 0, 9, 3, 2, 5, 3, 8, 6, 3, 5, 3, 4, 5, 9, 1, 4, 1, 8, 0, 9, 4, 9, 5, 3, 0, 4, 2, 0, 8, 3, 4, 5, 9, 9, 4, 4, 9, 2, 5, 8, 0, 7, 1, 0, 6, 9, 7, 5, 0, 0, 5, 5, 6, 6, 8, 9, 8, 5, 2, 0, 3, 9, 2, 6, 5, 9, 2, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.1 Shapiro-Drinfeld constant, p. 209.

LINKS

Table of n, a(n) for n=0..102.

EXAMPLE

0.97801247818664622020182795997868268...

MATHEMATICA

eq = E^u + 2*E^(u + v/2) + E^(v/2) + E^(u + v) == 2*E^v + E^(3*v/2) && 2 + 2*E^(u + v/2) == 2*y + 2*E^v + E^u*(v - 2) && E^u*(u - v + 1) + 2*E^(u + v/2) + 1 == 2*E^v; mu = y /. FindRoot[eq , {{y, 1}, {u, -1/3}, {v, 1/3}}, WorkingPrecision -> 105]; RealDigits[mu, 10, 103] // First

CROSSREFS

Sequence in context: A183699 A203079 A232128 * A081855 A019887 A163931

Adjacent sequences:  A086275 A086276 A086277 * A086279 A086280 A086281

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Jul 14 2003

EXTENSIONS

More terms from Jean-Fran├žois Alcover, Jun 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 16:47 EST 2019. Contains 319364 sequences. (Running on oeis4.)