login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086279 Decimal expansion of 2nd Stieltjes constant gamma_2 (negated). 21
0, 0, 9, 6, 9, 0, 3, 6, 3, 1, 9, 2, 8, 7, 2, 3, 1, 8, 4, 8, 4, 5, 3, 0, 3, 8, 6, 0, 3, 5, 2, 1, 2, 5, 2, 9, 3, 5, 9, 0, 6, 5, 8, 0, 6, 1, 0, 1, 3, 4, 0, 7, 4, 9, 8, 8, 0, 7, 0, 1, 3, 6, 5, 4, 5, 1, 8, 5, 0, 7, 5, 5, 3, 8, 2, 2, 8, 0, 4, 1, 4, 1, 7, 1, 9, 7, 8, 1, 9, 7, 3, 8, 1, 3, 7, 4, 5, 3, 7, 3, 1, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 166.

LINKS

Table of n, a(n) for n=0..101.

Eric Weisstein's World of Mathematics, Stieltjes Constants

Wikipedia, Stieltjes constants

FORMULA

Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma_2 = -(Pi/3)*Integral_{0..infinity}(a^3-3*a*b^2)/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = (-Pi/(n+1))* Integral_{0..infinity} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k)*a^(n-2*k). - Peter Luschny, Apr 19 2018

EXAMPLE

-0.0096903...

MAPLE

evalf(gamma(2)); # R. J. Mathar, Feb 02 2011

MATHEMATICA

Join[{0, 0}, RealDigits[N[-StieltjesGamma[2], 101]][[1]]] (* Jean-Fran├žois Alcover, Oct 23 2012 *)

N[4*EulerGamma^3 + Residue[Zeta[s]^4 / 2 - 2*EulerGamma*Zeta[s]^3, {s, 1}], 100] (* Vaclav Kotesovec, Jan 07 2017 *)

CROSSREFS

Cf. A001620, A082633, A086280, A086281, A086282, A183141, A183167, A183206, A184853, A184854.

Sequence in context: A161484 A103985 A153071 * A155533 A083281 A019711

Adjacent sequences:  A086276 A086277 A086278 * A086280 A086281 A086282

KEYWORD

nonn,cons,changed

AUTHOR

Eric W. Weisstein, Jul 14 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 20 06:09 EDT 2018. Contains 302772 sequences. (Running on oeis4.)