login
A086256
Number of base-2 Fermat pseudoprimes that divide 2^n-1.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 1, 4, 1, 2, 1, 1, 0, 13, 4, 5, 0, 2, 2, 1, 1, 13, 1, 1, 4, 7, 1, 11, 4, 14, 9, 4, 4, 28, 0, 12, 11, 12, 4, 2, 5, 28, 4, 26, 1, 63, 0, 1, 5, 12, 1, 29, 1, 12, 2, 44, 4, 101, 4, 11, 27, 12, 1, 26, 4, 15, 4, 11, 1, 75, 1, 11, 14, 36, 0, 40, 11
OFFSET
1,20
COMMENTS
A base-2 Fermat pseudoprime is a composite number x such that 2^x = 2 mod x.
LINKS
Eric Weisstein's World of Mathematics, Pseudoprime
FORMULA
a(n) = Sum{d|n} A086249(d), the Mobius transform of A086249.
MATHEMATICA
Table[d=Divisors[2^n-1]; cnt=0; Do[m=d[[i]]; If[ !PrimeQ[m]&&PowerMod[2, m, m]==2, cnt++ ], {i, Length[d]}]; cnt, {n, 100}]
CROSSREFS
Cf. A001567 (base-2 pseudoprimes), A046801, A086249.
Sequence in context: A059119 A305333 A127772 * A227964 A057550 A324892
KEYWORD
nonn,hard,more
AUTHOR
T. D. Noe, Jul 14 2003
STATUS
approved