

A086257


Number of primitive prime factors of 2^n+1.


5



1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 1, 1, 2, 2, 1, 2, 1, 4, 2, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 1, 3, 3, 4, 1, 2, 3, 4, 5, 2, 1, 4, 1, 3, 3, 3, 3, 1, 2, 3, 2, 1, 4, 3, 2, 4, 1, 4, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,15


COMMENTS

A prime factor of 2^n+1 is called primitive if it does not divide 2^r+1 for any r<n. Zsigmondy's theorem says that there is at least one primitive prime factor except for n=3. See A086258 for those n that have a record number of primitive prime factors.


LINKS

Amiram Eldar, Table of n, a(n) for n = 0..1062 (terms 0..500 from T. D. Noe)
Eric Weisstein's World of Mathematics, Zsigmondy Theorem


EXAMPLE

a(14) = 2 because 2^14+1 = 5*29*113 and 29 and 113 do not divide 2^r+1 for r < 14.


MATHEMATICA

nMax=200; pLst={}; Table[f=Transpose[FactorInteger[2^n+1]][[1]]; f=Complement[f, pLst]; cnt=Length[f]; pLst=Union[pLst, f]; cnt, {n, 0, nMax}]


CROSSREFS

Cf. A046799 (number of distinct prime factors of 2^n+1), A054992 (number of prime factors, with repetition, of 2^n+1), A086258.
Sequence in context: A214054 A330739 A076398 * A161098 A136177 A212178
Adjacent sequences: A086254 A086255 A086256 * A086258 A086259 A086260


KEYWORD

hard,nonn


AUTHOR

T. D. Noe, Jul 14 2003


STATUS

approved



