login
A086056
Decimal expansion of Pi/(2e).
3
5, 7, 7, 8, 6, 3, 6, 7, 4, 8, 9, 5, 4, 6, 0, 8, 5, 8, 9, 5, 5, 0, 4, 6, 5, 9, 1, 6, 5, 6, 3, 4, 8, 1, 4, 9, 5, 6, 0, 4, 2, 5, 5, 1, 1, 5, 8, 2, 2, 0, 7, 9, 1, 0, 2, 4, 9, 8, 5, 3, 2, 6, 7, 6, 6, 3, 6, 4, 4, 3, 1, 5, 9, 2, 0, 4, 5, 8, 4, 6, 9, 7, 2, 0, 0, 9, 4, 2, 1, 7, 1, 1, 7, 8, 3, 6, 7, 7, 9, 4, 0, 2
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.4.3 and 7.2, pp. 22, 459.
LINKS
Victor S. Adamchik, The Multiple Gamma Function and Its Application to Computation of Series, Ramanujan J. vol. 9, no 3. (2005) 271-288.
Christophe Chesneau, On Surprising Approximations Involving Multiple Mathematical Constants, Pan-Amer. J. Math. (2025) Vol. 4, No. 2. See p. 8.
Zdzislaw A. Melzak, Infinite products for πe and π/e, Amer. Math. Monthly 68 (1961) 39-41.
Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant Approximations.
Eric Weisstein's World of Mathematics, InfiniteProduct.
Eric Weisstein's World of Mathematics, Masser-Gramain Constant.
FORMULA
Equals Integral_{x>=0} cos(x)/(x^2+1) dx = Integral_{x>=0} x*sin(x)/(x^2+1) dx. - Jean-François Alcover, Mar 28 2013
Equals Product_{k>=1} (1 + 2/k)^((-1)^(k+1) * k). - Amiram Eldar, Jul 16 2020
EXAMPLE
0.57786367489546085895504659165634814956042551...
MAPLE
Digits:=100: evalf(Pi/(2*exp(1))); # Wesley Ivan Hurt, Jan 07 2017
MATHEMATICA
First@ RealDigits@ N[Pi/(2 E), 120] (* Michael De Vlieger, Jan 07 2017 *)
PROG
(PARI) Pi/(2*exp(1)) \\ Michel Marcus, Jan 07 2017
CROSSREFS
Cf. A216184 (Integral_{x>=0} sin(x)/(x^2+1)).
Sequence in context: A065773 A114916 A001989 * A154475 A375336 A264527
KEYWORD
nonn,cons,easy,changed
AUTHOR
Eric W. Weisstein, Jul 07 2003
STATUS
approved