login
A086059
Sum of first n 7-almost primes.
0
128, 320, 608, 928, 1360, 1808, 2288, 2936, 3608, 4312, 5032, 5832, 6664, 7636, 8644, 9700, 10780, 11868, 12988, 14188, 15404, 16652, 18110, 19582, 21094, 22662, 24246, 25866, 27498, 29178, 30938, 32738, 34562, 36418, 38290, 40274, 42274, 44354
OFFSET
1,1
COMMENTS
Elements in this sequence can themselves be 7-almost primes. a(1) = 128 = 2^7. Also a 7-Brilliant number. a(2) = 320 = 2^6 * 5. Also a 7-Brilliant number. Does this happen infinitely often? - Jonathan Vos Post, Dec 11 2004
EXAMPLE
a(2)=320 because sum of first two 7-almost primes i.e. 128+192 is 320.
MATHEMATICA
Accumulate[Select[Range[2500], PrimeOmega[#]==7&]] (* Harvey P. Dale, Oct 18 2018 *)
CROSSREFS
Sequence in context: A045053 A234877 A229360 * A220582 A203449 A195090
KEYWORD
easy,nonn
AUTHOR
Shyam Sunder Gupta, Aug 24 2003
STATUS
approved