OFFSET
1,1
COMMENTS
Madelung constant b2(2), negated.
REFERENCES
G. Boros and V. H. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, 2004 (equation 13.6.6).
LINKS
Eric Weisstein's World of Mathematics, Madelung Constants
FORMULA
Pi*log(2) = -(8/3)*int(log(x)/sqrt(1+4*x-4*x^2), x=0..1). - John M. Campbell, Feb 07 2012
Pi*log(2) = int((x/sin(x))^2, x=0..Pi/2) = int(log(x^2+1)/(x^2+1), x=0..infinity) = int(-log(cos(x)), x=-Pi/2..Pi/2) = int(arctan(1/x)^2, x=0..infinity). - Jean-François Alcover, May 30 2013
From Amiram Eldar, Jul 11 2020: (Start)
Equals Integral_{x=-1..1} arcsin(x) dx / x.
Equals Integral_{x=-Pi/2..Pi/2} x*cot(x) dx. (End)
Equals Integral_{x = 0..oo} log(x^2 + 4)/(x^2 + 4) dx. - Peter Bala, Jul 22 2022
Equals -Im(Polylog(2, 2)). - Mohammed Yaseen, Jul 03 2024
EXAMPLE
2.1775860903036021305006888982376139...
MATHEMATICA
RealDigits[Pi Log[2], 10, 120][[1]] (* Harvey P. Dale, Dec 31 2011 *)
CROSSREFS
KEYWORD
AUTHOR
Eric W. Weisstein, Jul 07 2003
EXTENSIONS
Corrected by Antti Ahti (antti.ahti(AT)tkk.fi), Nov 17 2004
More terms from Benoit Cloitre, May 21 2005
STATUS
approved