This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157240 A128018(n) + 1 1
 2, -1, -7, -7, 17, 65, 65, -127, -511, -511, 1025, 4097, 4097, -8191, -32767, -32767, 65537, 262145, 262145, -524287, -2097151, -2097151, 4194305, 16777217, 16777217, -33554431, -134217727, -134217727, 268435457, 1073741825 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Generating floretion is Y = .5('i + 'j + 'k + i' + j' + k') + ee. ("tes"). Note: A current conjecture is that if X is a floretion for which 4*tes(X^n) is an integer for all n, then X+sigma(X) also has this property. "sigma" is the uniquely defined projection operator which "flips the arrows" of a floretion (i.e. sigma('i) = i', sigma('j) = j', etc.). Taking X = .5('i + 'j + 'k + ee), then tesseq(X) = [ -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, ...] is an integer sequence, thus by the conjecture 4*tes(Y^n) = 4*tes((X+sigma)^n) should also be an integer sequence for all n. LINKS FORMULA G.f. (2-7*x+8*x^2)/((1-x)*(4*x^2-2*x+1)). CROSSREFS Sequence in context: A217106 A086054 A011134 * A144749 A021463 A199964 Adjacent sequences:  A157237 A157238 A157239 * A157241 A157242 A157243 KEYWORD easy,sign AUTHOR Creighton Dement (creighton.k.dement(AT)uni-oldenburg.de), Feb 25 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .