login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086035 Decimal expansion of the Riemann zeta prime modulo function at 5 for primes of the form 4k+1. 1
0, 0, 0, 3, 2, 3, 4, 7, 4, 0, 3, 4, 2, 2, 1, 7, 9, 7, 5, 1, 8, 5, 1, 1, 9, 0, 8, 1, 8, 6, 0, 4, 1, 0, 8, 3, 9, 7, 7, 4, 4, 2, 7, 3, 3, 7, 0, 5, 7, 9, 9, 1, 4, 7, 3, 3, 6, 6, 9, 5, 9, 3, 3, 5, 7, 2, 6, 3, 0, 2, 6, 0, 1, 1, 4, 7, 7, 7, 0, 1, 1, 8, 6, 0, 4, 0, 0, 0, 5, 7, 1, 1, 7, 6, 8, 7, 2, 1, 8, 1, 6, 6, 8, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..104.

X. Gourdon and P. Sebah, Some Constants from Number theory.

FORMULA

Zeta_Q(5) = Sum_{q prime=1 mod 4} 1/q^5

EXAMPLE

0.0003234740342217...

MATHEMATICA

a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 120; $MaxExtraPrecision = 850; Join[{0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*5]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]]][[1 ;; 105]] (* Jean-Fran├žois Alcover, Jun 24 2011, after X. Gourdon and P. Sebah, updated Mar 14 2018 *)

CROSSREFS

Sequence in context: A220071 A132408 A091821 * A268289 A201907 A003559

Adjacent sequences:  A086032 A086033 A086034 * A086036 A086037 A086038

KEYWORD

cons,nonn

AUTHOR

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 23:44 EST 2019. Contains 319206 sequences. (Running on oeis4.)