This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086032 Decimal expansion of the Riemann zeta prime modulo function at 2 for primes of the form 4k+1. 3
 0, 5, 3, 8, 1, 3, 7, 6, 3, 5, 7, 4, 0, 5, 7, 6, 7, 0, 2, 8, 0, 6, 7, 8, 2, 8, 7, 3, 4, 1, 5, 3, 6, 5, 6, 2, 2, 8, 5, 6, 7, 5, 5, 0, 1, 4, 9, 5, 0, 8, 5, 5, 3, 2, 2, 9, 3, 9, 1, 1, 4, 2, 2, 2, 9, 5, 8, 6, 6, 8, 2, 7, 0, 4, 4, 1, 4, 2, 6, 4, 5, 1, 4, 2, 5, 2, 6, 5, 5, 7, 5, 0, 4, 2, 3, 4, 3, 8, 9, 1, 2, 9, 2, 9, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547, section 3.2 constant P(m=4,n=1,s=2). X. Gourdon and P. Sebah, Some Constants from Number theory. FORMULA Zeta_Q(2) = Sum_{r prime=1 mod 4} 1/r^2= sum_{n>=1} 1/A002144(n)^2. Equals A085548 -1/4 - A085991. - R. J. Mathar, Apr 03 2011 EXAMPLE 0.0538137635740576... MATHEMATICA DirichletBeta[s_] = (Zeta[s, 1/4] - Zeta[s, 3/4])/4^s; a[s_] = (1 + 2^-s)^-1* DirichletBeta[s] Zeta[s]/Zeta[2 s]; m = 110; \$MaxExtraPrecision = 320; Prepend[RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]*Log[a[(2n + 1)*2]]/(2n + 1), {n, 0, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]][[1]], 0][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011, after X. Gourdon and P. Sebah *) CROSSREFS Cf. A085991. Sequence in context: A019663 A187488 A087654 * A018222 A241149 A093203 Adjacent sequences:  A086029 A086030 A086031 * A086033 A086034 A086035 KEYWORD cons,nonn AUTHOR Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 07 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.