login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084977 Values that show the slow decrease in the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime. 4
670873, 639281, 463722, 292684, 260522, 256245, 244265, 228429, 215476, 213675, 203053, 167894, 144069, 137748, 119533, 108882, 92024, 81248, 63042, 56651, 52808, 52185, 36338, 36089, 35698, 29717, 27520, 26189, 23440, 23096, 23005 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = floor(1000000*Af(k)) with k such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

REFERENCES

R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.

P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

LINKS

H. J. Smith, Table of n, a(n) for n = 1..128

H. J. Smith, Andrica's Conjecture

Eric Weisstein's World of Mathematics, Andrica's Conjecture.

EXAMPLE

a(3)=46372 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361)- sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.

CROSSREFS

Cf. A078693, A079098, A079296, A084974, A084975, A084976.

Sequence in context: A233817 A204887 A251503 * A049499 A068246 A068248

Adjacent sequences:  A084974 A084975 A084976 * A084978 A084979 A084980

KEYWORD

nonn

AUTHOR

Harry J. Smith, Jun 16 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 07:57 EDT 2017. Contains 287212 sequences.