login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084977 Values that show the slow decrease in the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime. 4
670873, 639281, 463722, 292684, 260522, 256245, 244265, 228429, 215476, 213675, 203053, 167894, 144069, 137748, 119533, 108882, 92024, 81248, 63042, 56651, 52808, 52185, 36338, 36089, 35698, 29717, 27520, 26189, 23440, 23096, 23005 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) = floor(1000000*Af(k)) with k such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

REFERENCES

R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.

P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

LINKS

H. J. Smith, Table of n, a(n) for n = 1..128

H. J. Smith, Andrica's Conjecture

Eric Weisstein's World of Mathematics, Andrica's Conjecture.

EXAMPLE

a(3)=46372 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361)- sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.

CROSSREFS

Cf. A078693, A079098, A079296, A084974, A084975, A084976.

Sequence in context: A233817 A204887 A251503 * A049499 A068246 A068248

Adjacent sequences:  A084974 A084975 A084976 * A084978 A084979 A084980

KEYWORD

nonn

AUTHOR

Harry J. Smith, Jun 16 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 13:53 EST 2017. Contains 295001 sequences.