login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084974 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime. 5
7, 113, 1327, 1669, 2477, 2971, 3271, 4297, 4831, 5591, 31397, 34061, 43331, 44293, 58831, 155921, 370261, 492113, 604073, 1357201, 1561919, 2010733, 2127163, 2238823, 4652353, 6034247, 7230331, 8421251, 8917523, 11113933, 20831323 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) are the primes p(k) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

REFERENCES

R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.

P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

LINKS

H. J. Smith, Table of n, a(n) for n = 1..128

H. J. Smith, Andrica's Conjecture

Eric Weisstein's World of Mathematics, Andrica's Conjecture.

EXAMPLE

a(3)=1327 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.

CROSSREFS

Cf. A078693, A079098, A079296, A084975, A084976, A084977.

Sequence in context: A079296 A081531 A142537 * A156240 A152927 A064330

Adjacent sequences:  A084971 A084972 A084973 * A084975 A084976 A084977

KEYWORD

nonn

AUTHOR

Harry J. Smith, Jun 16 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 12:43 EST 2017. Contains 295001 sequences.