login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084974 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime. 5
7, 113, 1327, 1669, 2477, 2971, 3271, 4297, 4831, 5591, 31397, 34061, 43331, 44293, 58831, 155921, 370261, 492113, 604073, 1357201, 1561919, 2010733, 2127163, 2238823, 4652353, 6034247, 7230331, 8421251, 8917523, 11113933, 20831323 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) are the primes p(k) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

REFERENCES

R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.

P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

LINKS

H. J. Smith, Table of n, a(n) for n = 1..128

H. J. Smith, Andrica's Conjecture

Eric Weisstein's World of Mathematics, Andrica's Conjecture.

EXAMPLE

a(3)=1327 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.

CROSSREFS

Cf. A078693, A079098, A079296, A084975, A084976, A084977.

Sequence in context: A079296 A081531 A142537 * A156240 A152927 A064330

Adjacent sequences:  A084971 A084972 A084973 * A084975 A084976 A084977

KEYWORD

nonn

AUTHOR

Harry J. Smith, Jun 16 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 17:57 EDT 2017. Contains 287241 sequences.