login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081124 Binomial transform of floor(n/2)!. 4
1, 2, 4, 8, 17, 38, 90, 224, 585, 1594, 4520, 13288, 40409, 126782, 409646, 1360512, 4637681, 16202034, 57941164, 211860488, 791272129, 3015807254, 11719800674, 46401584096, 187039192185, 767058993386, 3198568491792, 13553864902504 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..880

Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv:1203.3786 [math.CO], 2012. - From N. J. A. Sloane, Sep 17 2012

FORMULA

a(n) = Sum_{k=0..n} C(n, k)*floor(k/2)!.

E.g.f.: exp(x)*(1+sqrt(Pi)/2*(x+2)*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003

Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-1)*a(n-3)=0. - R. J. Mathar, Nov 24 2012

a(n) ~ sqrt(Pi*n)/2 * exp(sqrt(2*n)-n/2-1/2)*(n/2)^(n/2) * (1+5/(3*sqrt(2*n))). - Vaclav Kotesovec, Aug 15 2013

MATHEMATICA

Table[Sum[Binomial[n, k]*Floor[k/2]!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 15 2013 *)

PROG

(PARI) for(n=0, 50, print1(sum(k=0, n, binomial(n, k)*(floor(k/2))!), ", ")) \\ G. C. Greubel, Feb 02 2017

CROSSREFS

Cf. A081123, A004526.

Cf. A084261.

Sequence in context: A229202 A003007 A086615 * A090901 A101516 A118928

Adjacent sequences:  A081121 A081122 A081123 * A081125 A081126 A081127

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Mar 07 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 18 13:07 EST 2018. Contains 299322 sequences. (Running on oeis4.)