This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081124 Binomial transform of floor(n/2)!. 4
 1, 2, 4, 8, 17, 38, 90, 224, 585, 1594, 4520, 13288, 40409, 126782, 409646, 1360512, 4637681, 16202034, 57941164, 211860488, 791272129, 3015807254, 11719800674, 46401584096, 187039192185, 767058993386, 3198568491792, 13553864902504 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..880 Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv:1203.3786 [math.CO], 2012. - From N. J. A. Sloane, Sep 17 2012 FORMULA a(n) = Sum_{k=0..n} C(n, k)*floor(k/2)!. E.g.f.: exp(x)*(1+sqrt(Pi)/2*(x+2)*exp(x^2/4)*erf(x/2)). - Vladeta Jovovic, Sep 25 2003 Conjecture: 2*a(n) -4*a(n-1) +(-n+2)*a(n-2) +(n-1)*a(n-3)=0. - R. J. Mathar, Nov 24 2012 a(n) ~ sqrt(Pi*n)/2 * exp(sqrt(2*n)-n/2-1/2)*(n/2)^(n/2) * (1+5/(3*sqrt(2*n))). - Vaclav Kotesovec, Aug 15 2013 MATHEMATICA Table[Sum[Binomial[n, k]*Floor[k/2]!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 15 2013 *) PROG (PARI) for(n=0, 50, print1(sum(k=0, n, binomial(n, k)*(floor(k/2))!), ", ")) \\ G. C. Greubel, Feb 02 2017 CROSSREFS Cf. A081123, A004526. Cf. A084261. Sequence in context: A229202 A003007 A086615 * A090901 A101516 A118928 Adjacent sequences:  A081121 A081122 A081123 * A081125 A081126 A081127 KEYWORD easy,nonn AUTHOR Paul Barry, Mar 07 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 16:21 EST 2019. Contains 319307 sequences. (Running on oeis4.)