login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081126 Binomial transform of n!/floor(n/2)!. 2
1, 2, 5, 16, 53, 206, 817, 3620, 16361, 80218, 401501, 2139512, 11641885, 66599846, 388962953, 2367284236, 14700573137, 94523836850, 619674301621, 4186249123808, 28809504493061, 203556335785342, 1463877667140065 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums of exponential Riordan array [(1+x), x(1+x)]. - Paul Barry, Apr 17 2007

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Guo-Niu Han, Enumeration of Standard Puzzles

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

FORMULA

a(n) = sum(k=0..n, C(n, k)*n!/floor(n/2)!).

a(n) = A018191(n+1).

E.g.f.: (1+x)*exp(x+x^2). - Vladeta Jovovic, Aug 06 2006

a(n) = sum(k=0..n, C(n,k)*k!/floor(k/2)!); a(n) = sum(k=0..n, C(k+1,n-k)*n!/k!). - Paul Barry, Apr 17 2007

Recurrence: (n-2)*a(n) = (n-3)*a(n-1) + 2*(n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 13 2012

a(n) ~ 2^(n/2-1)*exp(sqrt(n/2)-n/2-1/8)*n^(n/2+1/2)*(1+85/96*sqrt(2)/sqrt(n)). - Vaclav Kotesovec, Oct 13 2012

MATHEMATICA

Table[n!*SeriesCoefficient[(1+x)*E^(x+x^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *)

CROSSREFS

Cf. A018191, A081125.

Sequence in context: A148397 A148398 A100442 * A018191 A006191 A149959

Adjacent sequences:  A081123 A081124 A081125 * A081127 A081128 A081129

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Mar 07 2003, Apr 17 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 17:24 EST 2016. Contains 278682 sequences.