The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081121 Numbers k such that Mordell's equation y^2 = x^3 - k has no integral solutions. 30
 3, 5, 6, 9, 10, 12, 14, 16, 17, 21, 22, 24, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 42, 43, 46, 50, 51, 52, 57, 58, 59, 62, 65, 66, 68, 69, 70, 73, 75, 77, 78, 80, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Mordell's equation has a finite number of integral solutions for all nonzero k. Gebel computes the solutions for k < 10^5. Sequence A054504 gives k for which there are no integral solutions to y^2 = x^3 + k. See A081120 for the number of integral solutions to y^2 = x^3 - n. This is the complement of A106265. - M. F. Hasler, Oct 05 2013 Numbers k such that A081120(k) = 0. - Charles R Greathouse IV, Apr 29 2015 REFERENCES T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191. LINKS T. D. Noe, Table of n, a(n) for n = 1..7757 (from Gebel, 3136 and 6789 removed by Seth A. Troisi, May 20 2019) J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017] J. Gebel, A. Petho and G. Zimmer, On Mordell's equation, Compositio Mathematica 110 (3) (1998), 335-367. MR1602064. Eric Weisstein's World of Mathematics, Mordell Curve MATHEMATICA m = 99; f[_List] := (xm = 2 xm; ym = Ceiling[xm^(3/2)]; Complement[Range[m], Outer[Plus, -Range[0, ym]^2, Range[-xm, xm]^3] //Flatten //Union]); xm=10; FixedPoint[f, {}] (* Jean-François Alcover, Apr 29 2011 *) CROSSREFS Cf. A054504, A081120, A106265. Sequence in context: A288308 A187574 A187833 * A187837 A325428 A239064 Adjacent sequences:  A081118 A081119 A081120 * A081122 A081123 A081124 KEYWORD nice,nonn AUTHOR T. D. Noe, Mar 06 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 23:51 EDT 2022. Contains 357230 sequences. (Running on oeis4.)