login
A080188
Primes p such that 13 is the largest of all prime factors of the numbers between p and the next prime (cf. A052248).
2
23, 311, 349, 857, 1091, 1871, 1949, 2027, 2339, 2729, 3119, 3821, 5849, 6551, 7487, 9437, 10139, 10529, 11699, 15287, 18251, 21059, 21839, 38609, 42899, 49919, 51479, 57329, 61151, 65519, 69497, 70199, 70979, 81899, 97499, 108107, 109199, 114659
OFFSET
1,1
COMMENTS
The sequence appears to consist of 23, 349 and the lesser of twin primes q (A001359) such that q+1 is 13-smooth (A080197) but not 11-smooth (A051038, A080196).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1092 (terms below 10^11)
EXAMPLE
349 is a term since 350 = 2*5^2*7, 351 = 3^3*13, 352 = 2^5*11 are the numbers between 349 and the next prime 353; 857 is a term since 858 = 2*3*11*13 is the only number between 857 and the next prime 859.
MATHEMATICA
maxPrime[n1_, n2_] := FactorInteger[#][[-1, 1]] & /@ Range[n1, n2]; Select[Range[120000], PrimeQ[#] && Max[maxPrime[# + 1, NextPrime[#] - 1]] == 13 &] (* Amiram Eldar, Feb 08 2020 *)
PROG
(PARI) {forprime(p=2, 120000, q=nextprime(p+1); m=0; j=p+1; while(j<q&&m<=13, f=factor(j); a=f[matsize(f)[1], 1]; if(m<a, m=a); j++); if(m==13, print1(p, ", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 10 2003
STATUS
approved