login
A080187
Primes p such that 11 is the largest of all prime factors of the numbers between p and the next prime (cf. A052248).
2
19, 97, 197, 461, 659, 1319, 1451, 2111, 2309, 2969, 3167, 3299, 4157, 5279, 7127, 9239, 10889, 11549, 15971, 16631, 22637, 25409, 26729, 29567, 30491, 34649, 34847, 55439, 55901, 64151, 87119, 92399, 98009, 110879, 118799, 152459, 164999, 176417
OFFSET
1,1
COMMENTS
The sequence appears to consist of 19, 97 and the lesser of twin primes q (A001359) such that q+1 is 11-smooth (A051038) but not 7-smooth (A002473, A080195).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..521 (terms below 10^11)
EXAMPLE
97 is a term since 98 = 2*7^2, 99 = 3^2*11, 100 = 2^2*5^2 are the numbers between 97 and the next prime 101;
461 is a term since 462 = 2*3*7*11 is the only number between 461 and the next prime 463.
MATHEMATICA
maxPrime[n1_, n2_] := FactorInteger[#][[-1, 1]] & /@ Range[n1, n2]; Select[Range[180000], PrimeQ[#] && Max[maxPrime[# + 1, NextPrime[#] - 1]] == 11 &] (* _Amiram Eldar_, Feb 08 2020 *)
PROG
(PARI) {forprime(p=2, 180000, q=nextprime(p+1); m=0; j=p+1; while(j<q&&m<=11, f=factor(j); a=f[matsize(f)[1], 1]; if(m<a, m=a); j++); if(m==11, print1(p, ", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
_Klaus Brockhaus_, Feb 10 2003
STATUS
approved