login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080197 13-smooth numbers: i.e. numbers whose prime divisors are all <= 13. 17
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54, 55, 56, 60, 63, 64, 65, 66, 70, 72, 75, 77, 78, 80, 81, 84, 88, 90, 91, 96, 98, 99, 100, 104, 105, 108, 110, 112, 117, 120 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Numbers of the form 2^r*3^s*5^t*7^u*11^v*13^w with r, s, t, u, v, w >= 0.

LINKS

Table of n, a(n) for n=1..69.

EXAMPLE

33 = 3*11 and 39 = 3*13 are terms but 34 = 2*17 is not.

MATHEMATICA

mx = 120; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m*13^n, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}, {n, 0, Log[13, mx/(2^i*3^j*5^k*7^l*11^m)]}] (* Robert G. Wilson v, Aug 17 2012 *)

PROG

(PARI) test(n)= {m=n; forprime(p=2, 13, while(m%p==0, m=m/p)); return(m==1)} for(n=1, 200, if(test(n), print1(n", ")))

(MAGMA) [n: n in [1..150] | PrimeDivisors(n) subset PrimesUpTo(13)]; // Bruno Berselli, Sep 24 2012

(PARI) is_A080197(n, p=13)=n<=p||vecmax(factor(n, p)[, 1])<=p \\ M. F. Hasler, Jan 16 2015

CROSSREFS

Cf. A000079, A080196. For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080681, A080682, A080683.

Sequence in context: A102800 A072676 A235986 * A115847 A204315 A032966

Adjacent sequences:  A080194 A080195 A080196 * A080198 A080199 A080200

KEYWORD

easy,nonn

AUTHOR

Klaus Brockhaus, Feb 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 17:40 EST 2016. Contains 278755 sequences.