login
A080151
Let m = Wonderful Demlo number A002477(n); a(n) = sum of digits of m.
9
1, 4, 9, 16, 25, 36, 49, 64, 81, 82, 85, 90, 97, 106, 117, 130, 145, 162, 163, 166, 171, 178, 187, 198, 211, 226, 243, 244, 247, 252, 259, 268, 279, 292, 307, 324, 325, 328, 333, 340, 349, 360, 373, 388, 405, 406, 409, 414, 421, 430, 441, 454, 469, 486, 487
OFFSET
1,2
COMMENTS
Record values in A003132: a(n) = A003132(A051885(n)). - Reinhard Zumkeller, Jul 10 2011
LINKS
Eric Weisstein's World of Mathematics, Demlo Number
FORMULA
a(n) = A007953(A002477(n)).
a(n) = sqrt( A080150(n) ).
a(n) = (9^2)*(n/9 - {n/9} + {n/9}^2) = 81*(floor(n/9) + {n/9}^2), where the symbol {n} means fractional part of n. - Enrique Pérez Herrero, Nov 22 2009
a(9*n + k) = 81*n + k^2, with k in range 0 to 9. - Enrique Pérez Herrero, Nov 05 2022
Empirical g.f.: x*(17*x^8 + 15*x^7 + 13*x^6 + 11*x^5 + 9*x^4 + 7*x^3 + 5*x^2 + 3*x + 1) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Mar 05 2014
Empirical g.f. confirmed. - Robert Israel, Aug 05 2019
MAPLE
f := n -> 9*n - 81*frac(1/9*n) + 81*frac(1/9*n)^2:
map(f, [$1..100]); # Robert Israel, Aug 05 2019
MATHEMATICA
(* by direct counting *)
Repunit[n_] := (-1 + 10^n)/9; A080151[n_]:=Plus @@ IntegerDigits[Repunit[n]^2];
(* by the formula * )
A080151[n_] := (9^2)*(n/9 - FractionalPart[n/9] + FractionalPart[n/9]^2)
(* or alternatively *)
A080151[n_] := 81*(Floor[n/9]+ FractionalPart[n/9]^2) (* Enrique Pérez Herrero, Nov 22 2009 *)
PROG
(Haskell) a n=(div n 9)*81+(mod n 9)^2
A080151=map a [1..] \\ Chernin Nadav, Mar 06 2014
(PARI) vector(100, n, (n\9)*81+(n%9)^2) \\ Colin Barker, Mar 05 2014
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Eric W. Weisstein, Jan 31 2003
STATUS
approved