login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080151
Let m = Wonderful Demlo number A002477(n); a(n) = sum of digits of m.
9
1, 4, 9, 16, 25, 36, 49, 64, 81, 82, 85, 90, 97, 106, 117, 130, 145, 162, 163, 166, 171, 178, 187, 198, 211, 226, 243, 244, 247, 252, 259, 268, 279, 292, 307, 324, 325, 328, 333, 340, 349, 360, 373, 388, 405, 406, 409, 414, 421, 430, 441, 454, 469, 486, 487
OFFSET
1,2
COMMENTS
Record values in A003132: a(n) = A003132(A051885(n)). - Reinhard Zumkeller, Jul 10 2011
LINKS
Eric Weisstein's World of Mathematics, Demlo Number
FORMULA
a(n) = A007953(A002477(n)).
a(n) = sqrt( A080150(n) ).
a(n) = (9^2)*(n/9 - {n/9} + {n/9}^2) = 81*(floor(n/9) + {n/9}^2), where the symbol {n} means fractional part of n. - Enrique Pérez Herrero, Nov 22 2009
a(9*n + k) = 81*n + k^2, with k in range 0 to 9. - Enrique Pérez Herrero, Nov 05 2022
Empirical g.f.: x*(17*x^8 + 15*x^7 + 13*x^6 + 11*x^5 + 9*x^4 + 7*x^3 + 5*x^2 + 3*x + 1) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Mar 05 2014
Empirical g.f. confirmed. - Robert Israel, Aug 05 2019
MAPLE
f := n -> 9*n - 81*frac(1/9*n) + 81*frac(1/9*n)^2:
map(f, [$1..100]); # Robert Israel, Aug 05 2019
MATHEMATICA
(* by direct counting *)
Repunit[n_] := (-1 + 10^n)/9; A080151[n_]:=Plus @@ IntegerDigits[Repunit[n]^2];
(* by the formula * )
A080151[n_] := (9^2)*(n/9 - FractionalPart[n/9] + FractionalPart[n/9]^2)
(* or alternatively *)
A080151[n_] := 81*(Floor[n/9]+ FractionalPart[n/9]^2) (* Enrique Pérez Herrero, Nov 22 2009 *)
PROG
(Haskell) a n=(div n 9)*81+(mod n 9)^2
A080151=map a [1..] \\ Chernin Nadav, Mar 06 2014
(PARI) vector(100, n, (n\9)*81+(n%9)^2) \\ Colin Barker, Mar 05 2014
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Eric W. Weisstein, Jan 31 2003
STATUS
approved