This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080151 Let m = Wonderful Demlo number A002477(n); a(n) = sum of digits of m. 8
 1, 4, 9, 16, 25, 36, 49, 64, 81, 82, 85, 90, 97, 106, 117, 130, 145, 162, 163, 166, 171, 178, 187, 198, 211, 226, 243, 244, 247, 252, 259, 268, 279, 292, 307, 324, 325, 328, 333, 340, 349, 360, 373, 388, 405, 406, 409, 414, 421, 430, 441, 454, 469, 486, 487 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also a(n) = sqrt(A080150(n)). Record values in A003132: a(n) = A003132(A051885(n)). [Reinhard Zumkeller, Jul 10 2011] LINKS Eric Weisstein's World of Mathematics, Demlo Number FORMULA a(n)=(9^2)*(n/9-{n/9}+{n/9}^2)=81*(floor(x/9)+{x/9}^2), where the symbol {x} means fractional part of x. [Enrique Pérez Herrero, Nov 22 2009] Empirical g.f.: x*(17*x^8+15*x^7+13*x^6+11*x^5+9*x^4+7*x^3+5*x^2+3*x+1) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Mar 05 2014 MATHEMATICA (* by direct counting *) Repunit[n_] := (-1 + 10^n)/9; A080151[n_]:=Plus @@ IntegerDigits[Repunit[n]^2]; (* by the formula * ) A080151[n_] := (9^2)*(n/9 - FractionalPart[n/9] + FractionalPart[n/9]^2) (* or alternatively *) A080151[n_] := 81*(Floor[n/9]+ FractionalPart[n/9]^2) (* Enrique Pérez Herrero, Nov 22 2009 *) PROG (Haskell) a n=(div n 9)*81+(mod n 9)^2           A080151=map a [1..] \\ Chernin Nadav, Mar 06 2014 (PARI) vector(100, n, (n\9)*81+(n%9)^2) \\ Colin Barker, Mar 05 2014 CROSSREFS Cf. A080150, A002477, A080160, A080161, A080162. Sequence in context: A290934 A048387 A035121 * A292679 A106545 A169920 Adjacent sequences:  A080148 A080149 A080150 * A080152 A080153 A080154 KEYWORD nonn,base AUTHOR Eric W. Weisstein, Jan 31 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 19:08 EST 2019. Contains 319350 sequences. (Running on oeis4.)