login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051885 Smallest number whose sum of digits is n. 37
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 199, 299, 399, 499, 599, 699, 799, 899, 999, 1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999, 9999, 19999, 29999, 39999, 49999, 59999, 69999, 79999, 89999, 99999, 199999, 299999, 399999, 499999 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This is also the list of lunar triangular numbers: A087052 with duplicates removed. - N. J. A. Sloane, Jan 25 2011

Numbers n such that A061486(n) = n. - Amarnath Murthy, May 06 2001

The product of digits incremented by 1 is the same as the number incremented by 1. If a(n) = abcd...(a,b,c,d, etc. are digits of a(n)) {a(n) + 1} = (a+1)*(b+1)(c+1)*(d+1)*..., e.g., 299 + 1 = (2+1)*(9+1)*(9+1) = 300. - Amarnath Murthy, Jul 29 2003

A138471(a(n)) = 0. - Reinhard Zumkeller, Mar 19 2008

a(n+1) = A108971(A179988(n)). - Reinhard Zumkeller, Aug 09 2010, Jul 10 2011

Positions of records in A003132: A080151(n) = A003132(a(n)). - Reinhard Zumkeller, Jul 10 2011

a(n) = A242614(n,1). - Reinhard Zumkeller, Jul 16 2014

A254524(a(n)) = 1. - Reinhard Zumkeller, Oct 09 2015

The slowest strictly increasing sequence of nonnegative integers such that, for any two terms, calculating the difference of their decimal representations requires no borrowing. - Rick L. Shepherd, Aug 11 2017

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..100

D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]

A. Murthy, Exploring some new ideas on Smarandache type sets, functions and sequences, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000.

Index entries for sequences related to dismal (or lunar) arithmetic

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,10,-10).

FORMULA

These are the numbers i*10^j-1 (i=1..9, j >= 0). - N. J. A. Sloane, Jan 25 2011

a(n) = ((n mod 9) + 1)*10^floor(n/9) - 1 = a(n-1) + 10^floor((n-1)/9). - Henry Bottomley, Apr 24 2001

a(n) = A037124(n+1) - 1. - Reinhard Zumkeller, Jan 03 2008, Jul 10 2011

G.f.: x*(x^2+x+1)*(x^6+x^3+1) / ((x-1)*(10*x^9-1)). - Colin Barker, Feb 01 2013

MAPLE

P:=proc(n) local i, w, x; for i from 0 by 1 to n do w:=trunc(i/9); x:=(i-9*w)*10^w; while w>0 do x:=x+9*10^(w-1); w:=w-1; od; print(x); od; end: P(100); # Paolo P. Lava, Mar 11 2008

b:=10; t1:=[]; for j from 0 to 15 do for i from 1 to b-1 do t1:=[op(t1), i*b^j-1]; od: od: t1; # N. J. A. Sloane, Jan 25 2011

MATHEMATICA

a[n_] := (Mod[n, 9] + 1)*10^Floor[n/9] - 1; Table[a[n], {n, 0, 49}](* Jean-Fran├žois Alcover, Dec 01 2011, after Henry Bottomley *)

PROG

(Haskell)

a051885 n = (m + 1) * 10^n' - 1 where (n', m) = divMod n 9

-- Reinhard Zumkeller, Jul 10 2011

(MAGMA) [i*10^j-1: i in [1..9], j in [0..5]];

(PARI) A051885(n) = (n%9+1)*10^(n\9)-1  \\ M. F. Hasler, Jun 17 2012

CROSSREFS

Cf. A061104, A061105, A061486, A007953, A067043, A087052.

Numbers of form i*b^j-1 (i=1..b-1, j >= 0) for bases b = 2 through 9: A000225, A062318, A180516, A181287, A181288, A181303, A165804, A140576. - N. J. A. Sloane, Jan 25 2011

Cf. A002283.

Cf. A254524.

Sequence in context: A248013 A088473 A190876 * A227378 A226637 A274841

Adjacent sequences:  A051882 A051883 A051884 * A051886 A051887 A051888

KEYWORD

nonn,easy,base,nice,look

AUTHOR

Felice Russo, Dec 15 1999

EXTENSIONS

More terms from James A. Sellers, Dec 16 1999

Offset fixed by Reinhard Zumkeller, Jul 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 20 21:08 EDT 2017. Contains 292293 sequences.