login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080081 Beatty sequence for (3+sqrt(13))/2. 4
3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 42, 46, 49, 52, 56, 59, 62, 66, 69, 72, 75, 79, 82, 85, 89, 92, 95, 99, 102, 105, 108, 112, 115, 118, 122, 125, 128, 132, 135, 138, 142, 145, 148, 151, 155, 158, 161, 165, 168, 171, 175, 178, 181, 184, 188, 191, 194, 198, 201, 204, 208, 211, 214, 217, 221, 224, 227, 231, 234, 237, 241, 244, 247, 251, 254, 257, 260 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(1)=3; for n>1, a(n+1)=a(n)+4 if n is already in the sequence, a(n+1)=a(n)+3 otherwise.

a(n)-1 is the index of the n-th 1 in sequence A276397. - M. F. Hasler, Oct 07 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.

B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.

Index entries for sequences related to Beatty sequences

PROG

(MAGMA) [Floor(n*(3+Sqrt(13))/2): n in [1..80]]; // Vincenzo Librandi, Oct 25 2011

(PARI) A080081(n)=n*(3+sqrt(13))\2 \\ M. F. Hasler, Oct 07 2016

CROSSREFS

Differs from A059550 at 76th term.

Sequence in context: A059540 A190363 A059550 * A171982 A066343 A184909

Adjacent sequences:  A080078 A080079 A080080 * A080082 A080083 A080084

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 15 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 05:39 EST 2016. Contains 278841 sequences.