login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079652
Prime numbers using only the curved digits 0, 3, 6, 8 and 9.
6
3, 83, 89, 383, 389, 683, 809, 839, 863, 883, 983, 3083, 3089, 3389, 3803, 3833, 3863, 3889, 3989, 6089, 6389, 6689, 6803, 6833, 6863, 6869, 6883, 6899, 6983, 8009, 8039, 8069, 8089, 8093, 8363, 8369, 8389, 8609, 8663, 8669, 8689, 8693, 8699, 8803, 8839
OFFSET
1,1
COMMENTS
Intersection of A000040 and A072960. - K. D. Bajpai, Sep 01 2014
LINKS
Chris K. Caldwell and G. L. Honaker, Jr., 30689, Prime Curios!
Chris K. Caldwell and G. L. Honaker, Jr., 90863, Prime Curios!
MAPLE
N:= 4: # to get all terms with up to N digits
Digs:= {0, 3, 6, 8, 9}:
A:= NULL:
for d from 1 to N do
C:= combinat[cartprod]([Digs minus {0}, Digs $(d-1)]);
while not C[finished] do
L:= C[nextvalue]();
x:= add(L[i]*10^(d-i), i=1..d);
if isprime(x) then A:= A, x fi
od
od:
A; # Robert Israel, Aug 31 2014
MATHEMATICA
Select[ Range[8850], PrimeQ[ # ] && Union[ Join[ IntegerDigits[ # ], {0, 3, 6, 8, 9}]] == {0, 3, 6, 8, 9} &]
Select[Prime[Range[5000]], Intersection[IntegerDigits[#], {1, 2, 4, 5, 7}] == {} &] (* K. D. Bajpai, Sep 01 2014 *)
Select[FromDigits/@Tuples[{0, 3, 6, 8, 9}, 4], PrimeQ] (* Harvey P. Dale, Sep 05 2022 *)
CROSSREFS
Cf. A034470.
Sequence in context: A319836 A356503 A158995 * A139897 A085318 A101717
KEYWORD
base,nonn
AUTHOR
Shyam Sunder Gupta, Jan 23 2003
STATUS
approved