|
|
A072960
|
|
Numbers using only the curved digits 0, 3, 6, 8 and 9.
|
|
13
|
|
|
0, 3, 6, 8, 9, 30, 33, 36, 38, 39, 60, 63, 66, 68, 69, 80, 83, 86, 88, 89, 90, 93, 96, 98, 99, 300, 303, 306, 308, 309, 330, 333, 336, 338, 339, 360, 363, 366, 368, 369, 380, 383, 386, 388, 389, 390, 393, 396, 398, 399, 600, 603, 606, 608, 609, 630, 633, 636, 638
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Exponential density 0.69897... = log 5/log 10. A 10-automatic sequence. - Charles R Greathouse IV, Jul 22 2012
|
|
REFERENCES
|
M. J. Halm, Three Boxes, Puzzle-M Magazine (Apr. 1987).
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 1..1000
Index entries for 10-automatic sequences.
|
|
MATHEMATICA
|
f[n_] := Block[{id = IntegerDigits[n], curve = {0, 3, 6, 8, 9}}, If[ Union[ Join[id, curve]] == curve, True, False]]; Select[ Range[0, 240], f[ # ] & ]
FromDigits/@Tuples[{0, 3, 6, 8, 9}, 3] (* Harvey P. Dale, May 01 2018 *)
|
|
PROG
|
(PARI) isok(n)= my(d = Set(digits(n))); for (k=1, #d, if (vecsearch([1, 2, 4, 5, 7], d[k]), return (0))); 1; \\ Michel Marcus, May 11 2016
(Python)
from itertools import product
A072960_list = [0] + [int(a+''.join(b)) for l in range(5) for a in '3689' for b in product('03689', repeat=l)] # Chai Wah Wu, May 12 2016
|
|
CROSSREFS
|
Sequence in context: A231011 A196370 A005622 * A159264 A329500 A287362
Adjacent sequences: A072957 A072958 A072959 * A072961 A072962 A072963
|
|
KEYWORD
|
easy,nonn,base
|
|
AUTHOR
|
Michael Joseph Halm, Aug 13 2002
|
|
EXTENSIONS
|
Corrected by Rick L. Shepherd, Aug 13 2002
Offset corrected by Arkadiusz Wesolowski, Aug 15 2011
|
|
STATUS
|
approved
|
|
|
|