login
A079621
Matrix square of unsigned Lah triangle abs(A008297(n,k)) or A105278(n,k).
1
1, 4, 1, 24, 12, 1, 192, 144, 24, 1, 1920, 1920, 480, 40, 1, 23040, 28800, 9600, 1200, 60, 1, 322560, 483840, 201600, 33600, 2520, 84, 1, 5160960, 9031680, 4515840, 940800, 94080, 4704, 112, 1, 92897280, 185794560, 108380160, 27095040, 3386880, 225792
OFFSET
1,2
COMMENTS
Also the Bell transform of A002866(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -1 <= d <= 2). - Shuhei Tsujie, Apr 26 2019
FORMULA
E.g.f.: exp(x*y/(1-2*x)).
T(n, k) = n!/k!*binomial(n-1, k-1)*2^(n-k). - Vladeta Jovovic, Sep 24 2003
The n-th row polynomial equals x o (x + 2) o (x + 4) o ... o (x + 2*n), where o is the deformed Hadamard product of power series defined in Bala, section 3.1. - Peter Bala, Jan 18 2018
EXAMPLE
Triangle begins:
1;
4, 1;
24, 12, 1;
192, 144, 24, 1;
1920, 1920, 480, 40, 1;
...
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 2^n*(n+1)!, 9); # Peter Luschny, Jan 26 2016
MATHEMATICA
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[2^#*(#+1)!&, rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
CROSSREFS
Cf. A002866 (first column), A025168 (row sums).
Sequence in context: A257532 A183875 A136232 * A285061 A285066 A046860
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Jan 29 2003
STATUS
approved