login
Matrix square of unsigned Lah triangle abs(A008297(n,k)) or A105278(n,k).
1

%I #37 May 05 2019 03:23:09

%S 1,4,1,24,12,1,192,144,24,1,1920,1920,480,40,1,23040,28800,9600,1200,

%T 60,1,322560,483840,201600,33600,2520,84,1,5160960,9031680,4515840,

%U 940800,94080,4704,112,1,92897280,185794560,108380160,27095040,3386880,225792

%N Matrix square of unsigned Lah triangle abs(A008297(n,k)) or A105278(n,k).

%C Also the Bell transform of A002866(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 26 2016

%C Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -1 <= d <= 2). - _Shuhei Tsujie_, Apr 26 2019

%H P. Bala, <a href="/A048993/a048993.pdf">The white diamond product of power series</a>.

%H N. Nakashima and S. Tsujie, <a href="https://arxiv.org/abs/1904.09748">Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species</a>, arXiv:1904.09748 [math.CO], 2019.

%F E.g.f.: exp(x*y/(1-2*x)).

%F T(n, k) = n!/k!*binomial(n-1, k-1)*2^(n-k). - _Vladeta Jovovic_, Sep 24 2003

%F The n-th row polynomial equals x o (x + 2) o (x + 4) o ... o (x + 2*n), where o is the deformed Hadamard product of power series defined in Bala, section 3.1. - _Peter Bala_, Jan 18 2018

%e Triangle begins:

%e 1;

%e 4, 1;

%e 24, 12, 1;

%e 192, 144, 24, 1;

%e 1920, 1920, 480, 40, 1;

%e ...

%p # The function BellMatrix is defined in A264428.

%p # Adds (1, 0, 0, 0, ..) as column 0.

%p BellMatrix(n -> 2^n*(n+1)!, 9); # _Peter Luschny_, Jan 26 2016

%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

%t B = BellMatrix[2^#*(#+1)!&, rows = 12];

%t Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)

%Y Cf. A002866 (first column), A025168 (row sums).

%K nonn,tabl

%O 1,2

%A _Vladeta Jovovic_, Jan 29 2003