login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078029
Expansion of (1-x)/(1-2*x^3).
1
1, -1, 0, 2, -2, 0, 4, -4, 0, 8, -8, 0, 16, -16, 0, 32, -32, 0, 64, -64, 0, 128, -128, 0, 256, -256, 0, 512, -512, 0, 1024, -1024, 0, 2048, -2048, 0, 4096, -4096, 0, 8192, -8192, 0, 16384, -16384, 0, 32768, -32768, 0, 65536, -65536, 0, 131072, -131072, 0, 262144, -262144, 0, 524288, -524288, 0
OFFSET
0,4
FORMULA
G.f.: (1-x)/(1-2*x^3).
a(n) = (-1)^floor(4n/3)*(2-2*0^mod(n+1,3))^floor((n+1)/3). - Wesley Ivan Hurt, May 09 2015
a(n) = A077958(n) - A077958(n-1). - R. J. Mathar, Mar 04 2018
a(n) = (4^(n/6)/6)*(2 - 2^(2/3) + 2^(5/3)*sin(Pi*(2*n/3 + 5/6)) - 4*sin(Pi*(2*n/3 + 3/2))). - Eric Simon Jacob, Jul 14 2024
MAPLE
seq(op([2^n, -2^n, 0]), n=0..60); # Robert Israel, May 11 2015
MATHEMATICA
CoefficientList[Series[(1-x)/(1-2*x^3), {x, 0, 60}], x] (* Vincenzo Librandi, May 10 2015 *)
PROG
(Magma) &cat[[2^n, -2^n, 0]: n in [0..60]]; // Vincenzo Librandi, May 10 2015
(PARI) my(x='x+O('x^60)); Vec((1-x)/(1-2*x^3)) \\ G. C. Greubel, Aug 05 2019
(Sage) ((1-x)/(1-2*x^3)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 05 2019
(GAP) a:=[1, -1, 0];; for n in [4..60] do a[n]:=2*a[n-3]; od; a; # G. C. Greubel, Aug 05 2019
CROSSREFS
Sequence in context: A141333 A262967 A168090 * A078030 A262056 A264628
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved