login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078031 Expansion of (1-x)/(1+x^2-x^3). 2
1, -1, -1, 2, 0, -3, 2, 3, -5, -1, 8, -4, -9, 12, 5, -21, 7, 26, -28, -19, 54, -9, -73, 63, 64, -136, -1, 200, -135, -201, 335, 66, -536, 269, 602, -805, -333, 1407, -472, -1740, 1879, 1268, -3619, 611, 4887, -4230, -4276, 9117, 46, -13393, 9071, 13439, -22464, -4368, 35903, -18096, -40271, 53999, 22175 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The Ca2 sums, see A180662, of triangle A108299 equal the terms of this sequence. [Johannes W. Meijer, Aug 14 2011]

LINKS

Table of n, a(n) for n=0..58.

Index entries for linear recurrences with constant coefficients, signature (0, -1, 1).

FORMULA

G.f.: (1-x)/(1+x^2-x^3)

a(0)=1, a(1)=-1, a(2)=-1, a(n)=-a(n-2)+a(n-3) [From Harvey P. Dale, Apr 08 2012]

MAPLE

A078031 := proc(n) option remember: coeftayl((1-x)/(1+x^2-x^3), x=0, n) end: seq(A078031(n), n=0..58); # [Johannes W. Meijer, Aug 14 2011]

MATHEMATICA

CoefficientList[Series[(1-x)/(1+x^2-x^3), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, -1, 1}, {1, -1, -1}, 60] (* Harvey P. Dale, Apr 08 2012 *)

PROG

(PARI) Vec((1-x)/(1+x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

Cf. A077961 [Johannes W. Meijer, Aug 14 2011]

Sequence in context: A173291 A077961 A077962 * A213607 A298932 A089196

Adjacent sequences:  A078028 A078029 A078030 * A078032 A078033 A078034

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 15 20:47 EST 2019. Contains 319184 sequences. (Running on oeis4.)